Program Listing for File utility.h

Return to documentation for file (codes/slam/utility/utility.h)

/*******************************************************
 * Copyright (C) 2019, Robotics Group, Nanyang Technology University
 *
 * This file is part of sslam.
 *
 * Licensed under the GNU General Public License v3.0;
 * you may not use this file except in compliance with the License.
 *
 * Author: Zhang Handuo (hzhang032@e.ntu.edu.sg)
 *******************************************************/

#pragma once

#include <cmath>
#include <cassert>
#include <cstring>
#include <eigen3/Eigen/Dense>

class Utility {
public:
    #ifndef DOXYGEN_SHOULD_SKIP_THIS
        EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    #endif /* DOXYGEN_SHOULD_SKIP_THIS */

    template<typename Derived>
    static Eigen::Quaternion<typename Derived::Scalar> deltaQ(const Eigen::MatrixBase<Derived> &theta) {
        typedef typename Derived::Scalar Scalar_t;

        Eigen::Quaternion<Scalar_t> dq;
        Eigen::Matrix<Scalar_t, 3, 1> half_theta = theta;
        half_theta /= static_cast<Scalar_t>(2.0);
        dq.w() = static_cast<Scalar_t>(1.0);
        dq.x() = half_theta.x();
        dq.y() = half_theta.y();
        dq.z() = half_theta.z();
        return dq;
    }

    template<typename Derived>
    static Eigen::Matrix<typename Derived::Scalar, 3, 3> skewSymmetric(const Eigen::MatrixBase<Derived> &q) {
        Eigen::Matrix<typename Derived::Scalar, 3, 3> ans;
        ans << typename Derived::Scalar(0), -q(2), q(1),
                q(2), typename Derived::Scalar(0), -q(0),
                -q(1), q(0), typename Derived::Scalar(0);
        return ans;
    }

    template<typename Derived>
    static Eigen::Quaternion<typename Derived::Scalar> positify(const Eigen::QuaternionBase<Derived> &q) {
        //printf("a: %f %f %f %f", q.w(), q.x(), q.y(), q.z());
        //Eigen::Quaternion<typename Derived::Scalar> p(-q.w(), -q.x(), -q.y(), -q.z());
        //printf("b: %f %f %f %f", p.w(), p.x(), p.y(), p.z());
        //return q.template w() >= (typename Derived::Scalar)(0.0) ? q : Eigen::Quaternion<typename Derived::Scalar>(-q.w(), -q.x(), -q.y(), -q.z());
        return q;
    }

    template<typename Derived>
    static Eigen::Matrix<typename Derived::Scalar, 4, 4> Qleft(const Eigen::QuaternionBase<Derived> &q) {
        Eigen::Quaternion<typename Derived::Scalar> qq = positify(q);
        Eigen::Matrix<typename Derived::Scalar, 4, 4> ans;
        ans(0, 0) = qq.w(), ans.template block<1, 3>(0, 1) = -qq.vec().transpose();
        ans.template block<3, 1>(1, 0) = qq.vec(), ans.template block<3, 3>(1, 1) = qq.w() *
                                                                                    Eigen::Matrix<typename Derived::Scalar, 3, 3>::Identity() +
                                                                                    skewSymmetric(qq.vec());
        return ans;
    }

    template<typename Derived>
    static Eigen::Matrix<typename Derived::Scalar, 4, 4> Qright(const Eigen::QuaternionBase<Derived> &p) {
        Eigen::Quaternion<typename Derived::Scalar> pp = positify(p);
        Eigen::Matrix<typename Derived::Scalar, 4, 4> ans;
        ans(0, 0) = pp.w(), ans.template block<1, 3>(0, 1) = -pp.vec().transpose();
        ans.template block<3, 1>(1, 0) = pp.vec(), ans.template block<3, 3>(1, 1) = pp.w() *
                                                                                    Eigen::Matrix<typename Derived::Scalar, 3, 3>::Identity() -
                                                                                    skewSymmetric(pp.vec());
        return ans;
    }

    static Eigen::Vector3d R2ypr(const Eigen::Matrix3d &R) {
        Eigen::Vector3d n = R.col(0);
        Eigen::Vector3d o = R.col(1);
        Eigen::Vector3d a = R.col(2);

        Eigen::Vector3d ypr(3);
        double y = atan2(n(1), n(0));
        double p = atan2(-n(2), n(0) * cos(y) + n(1) * sin(y));
        double r = atan2(a(0) * sin(y) - a(1) * cos(y), -o(0) * sin(y) + o(1) * cos(y));
        ypr(0) = y;
        ypr(1) = p;
        ypr(2) = r;

        return ypr / M_PI * 180.0;
    }

    template<typename Derived>
    static Eigen::Matrix<typename Derived::Scalar, 3, 3> ypr2R(const Eigen::MatrixBase<Derived> &ypr) {
        typedef typename Derived::Scalar Scalar_t;

        Scalar_t y = ypr(0) / 180.0 * M_PI;
        Scalar_t p = ypr(1) / 180.0 * M_PI;
        Scalar_t r = ypr(2) / 180.0 * M_PI;

        Eigen::Matrix<Scalar_t, 3, 3> Rz;
        Rz << cos(y), -sin(y), 0,
                sin(y), cos(y), 0,
                0, 0, 1;

        Eigen::Matrix<Scalar_t, 3, 3> Ry;
        Ry << cos(p), 0., sin(p),
                0., 1., 0.,
                -sin(p), 0., cos(p);

        Eigen::Matrix<Scalar_t, 3, 3> Rx;
        Rx << 1., 0., 0.,
                0., cos(r), -sin(r),
                0., sin(r), cos(r);

        return Rz * Ry * Rx;
    }

    static Eigen::Matrix3d g2R(const Eigen::Vector3d &g);

    template<size_t N>
    struct uint_ {
    };

    template<size_t N, typename Lambda, typename IterT>
    void unroller(const Lambda &f, const IterT &iter, uint_<N>) {
        unroller(f, iter, uint_<N - 1>());
        f(iter + N);
    }

    template<typename Lambda, typename IterT>
    void unroller(const Lambda &f, const IterT &iter, uint_<0>) {
        f(iter);
    }

    template<typename T>
    static T normalizeAngle(const T &angle_degrees) {
        T two_pi(2.0 * 180);
        if (angle_degrees > 0)
            return angle_degrees -
                   two_pi * std::floor((angle_degrees + T(180)) / two_pi);
        else
            return angle_degrees +
                   two_pi * std::floor((-angle_degrees + T(180)) / two_pi);
    };
};